ViewPercobaan Bentuk Medan CIS MISC at Universitas Terbuka. LAPORAN PRAKTIKUM IPA di SD KEGIATAN PRAKTIKUM BENTUK MEDAN MAGNET Disusun oleh : ELI LISNAWATI SYARIFAH NIM. Laporan Percobaan Gaya Magnet Oleh Avid 1. Alat dan Bahan a. Magnet batang b. Jarum jahit c. Alumunium d. Seng e. Seuta Benag jahit f. Potongan plastik g. Potongan kertas h. Statif i. Isolatif plastif 2. Cara kerja a. Isilah lembar kerja sesui petunjuk b. Dekatkan magnet batang dengan bahan yang tersedia tetapi tidak sampai bersentuan c. Amati apa yang terjadi d. Masukkan data pada tabel 3. Teori dasar Magnet tergolong magnet alam, magnet mempunyai dua kutup yaitu kutup utara dan kutup selatan. Magnet bisa menarik benda – benda yang terbuat dari besi, nikel dan kobal. 4. Hasil pengamatan 5. Kesimpulan Dari hasil percobaan di atas dapat disimpulkan bahwa magnet dapat menarik benda benda tertentu yaitu besi,nikel. Benda yang dapat di tarik oleh magnet diset dengan benda magnetik dan benda yang tidak dapat ditarik magnet disebut benda non magnetik 6. Jawab pertanyaan Karena benda tersebutmengandung magnetik, sehingga benda tersebut dapat ditarik oleh magnet. Referensi Rumanta, M. 2019. Praktikum IPA di SD. Jakarta PT. Prata Sejati Mandiri. Semoga postingan Laporan Praktikum Gaya Magnet Praktikum IPA di SD ini bisa memberi manfaat. Amiin YRA. LEMBAR KERJA PRAKTIKUM IPA DASAR DI SD LISTRIK DAN MAGNET KEGIATAN PRAKTIKUM 1. Judul Percobaan Percobaan Bentuk Medan Magnet 2. Tujuan Menunjukan bentuk medan magnet sebuah magnet batang dengan serbuk-serbuk besi. 3. Alat dan Bahan 1. Karton putih 1 lembar / kertas putih. 2. Magnet batang 1 buah. 3. Serbuk-serbuk besi secukupnya. 4. Teori Dasar Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Kata magnet magnit berasal dari bahasa Yunani magnítis líthos yang berarti batu Magnesian. Magnesia adalah nama sebuah wilayah di Yunani pada masa lalu yang kini bernama Manisa sekarang berada di wilayah Turki di mana terkandung batu magnet yang ditemukan sejak zaman dulu di wilayah tersebut. Pada saat ini, suatu magnet adalah suatu materi yang mempunyai suatu medan magnet. Materi tersebut bisa dalam berwujud magnet tetap atau magnet tidak tetap. Magnet yang sekarang ini ada hampir semuanya adalah magnet buatan. Magnet selalu memiliki dua kutub yaitu kutub utara north/ N dan kutub selatan south/ S. Walaupun magnet itu dipotong-potong, potongan magnet kecil tersebut akan tetap memiliki dua kutub. Magnet dapat menarik benda lain. Beberapa benda bahkan tertarik lebih kuat dari yang lain, yaitu bahan logam. Namun tidak semua logam mempunyai daya tarik yang sama terhadap magnet. Besi dan baja adalah dua contoh materi yang mempunyai daya tarik yang tinggi oleh magnet. Sedangkan oksigen cair adalah contoh materi yang mempunyai daya tarik yang rendah oleh magnet. 5. Cara Kerja 1. Letakan sebuah magnet batang di atas meja 2. Peganglah selembar kertas karton putih di atas meja tersebut. 3. Taburkan serbuk besi secara merata di atas karton, kemudian ketuklah karton itu secara perlahan beberapa kali. 4. Amatilah dan gambarkan pola yang dibentuk serbuk besi itu. 5. Dari hasil percobaan itu buatlah kesimpulan medan magnet. 6. Data Pengamatan 7. Pembahasan 1. Gambar A menunjukan bahwa Garis Fluks Magnet Fluks garis gaya magnet gaya pada magnet yang tidak terlihat. Arah meninggalkan kutub utara menuju kutub selatan kemudian kembali ke kutub utara melalui magnet. 2. Gambar B menujukna pola yang dibuat oleh serbuk besi detelah magnet diletakan diatas serbuk besi 3. Gambar C menunjukan bahwa apa bila kutub N utara didekatkan ke kutub S selatan maka akan kutub N utara akan tertarik ke kutub S selatan, begitu juga sebaliknya. Apa bila kutub N di utara dekatkan ke kutub N utara maka akan saling tolak-menolak, begitu juga kutub S selatan di dekatkan ke kutub S selatan akan saling tolak menolak. 8. Kesimpulan Setelah melakukan percobaan, dapat disimpulkan bahwa kutub magnet yang sama apabila didekatkan akan saling tolak- menolak, apabila kutup yang berbeda di dekatkan akan tarik menarik. Magnet kutub utara akan selalu tertarik ke magnet kutub selatan. 9. Pertanyaan dan Jawaban 1. Apa yang dimaksud dengan magnet? Jawab a. Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Kata magnet magnit berasal dari bahasa Yunani magnítis líthos yang berarti batu Magnesian. b. Magnet ialah sejenis logam yang juga dikenali dengan nama besi berani. Magnet mempunyai medan magnet dan dapat menarik butir-butir besi lain ke arahnya. 2. Apakah sebuah magnet selalu memiliki kutub utara dan kutub selatan? Jelaskan! Jawab Ya, Setiap magnet mempunyai satu 'kutub selatan' dan satu 'kutub utara'. Apabila satu hujung magnet didekati suatu hujung magnet yang lain, kedua-dua hujung akan menarik di antara satu dengan yang lain sekiranya hujung-hujung magnet itu mempunyai kutub yang berlainan. Sebaliknya akan berlaku sekiranya kedua-dua hujung mempunyai kutub yang sama. Deskripsi: Percobaan Induksi Magnet ini adalah untuk mengetahui fenomena induksi solenoid besar terhadap solenoid kecil yang berada di tengah-tengahnya dengan memberikan gelombang input yang berbeda-beda (sinus, segitiga dan kotak). Hal-hal yang perlu diamati dari percobaan ini meliputi bentuk gelombang output, perbandingan amplitudo tegangan Bumi diketahui mempunyai medan magnet yang fungsinya guna menahan atmosfer di tempat serta melindungi manusia dari radiasi kosmik yang berbahaya serta angin beberapa para ahli pada penelitiannya menjumpai bahwa secara berkala di dalam periode jutaan tahun, medan magnet ini terbalik sehingga Kutub Utara serta Kutub Selatan bertukar banyaknya manfaat medan magnetik di muka bumi untuk keberlangsungan kehidupan mahluk didalamnya, lantas apa yang disebut medan magnetik itu sendiri? Simak baik – baik ulasannya di bawah Medan MagnetKonsep Gaya MagnetGaris – Garis Gaya MagnetVisualisasi Medan MagnetSifat Magnet1. Sifat Magnet2. Sifat Magnet BahanPercobaan Medan Magnet1. Eksperimen Oersted2. Eksperimen Faraday & HenryPengukuran & Rumus Medan MagnetContoh SoalDi dalam ilmu fisika, medan magnet merupakan sebuah medan yang dibentuk dengan cara menggerakan muatan listrik arus listrik yang menimbulkan adanya gaya dalam muatan listrik yang bergerak mekanika kuantum yang berasal dari sebuah partikel akan membentuk medan magnet yang mana putaran tersebut dipengaruhi oleh dirinya sendiri seperti arus listrik, itulah yang membuat medan magnet dari feromagnetik “permanen”.Suatu medan magnetik ialah medan vektor, yakni berkaitan dengan setiap titik pada ruang vektor yang bisa berubah menurut dari medan magnetik ialah seimbang dengan arah jarum kompas yang diletakkan pada medan Gaya MagnetKekuatan medan magnetik tergantung dengan jarak medan terhadap sebuah titik berbanding terbalik dengan kuadrat jarak dari yang terjadi pada kutub magnet baik itu kutub utara ataupun selatan yang ditempatkan dalam medan magnet disebut sebagai intensitas medan arus – arus yang membentuk pola lengkungan di dalam medan magnetik disebut sebagai garis – garis gaya magnet / garis – garis khayal magnet yang menunjukan arah medan magnet asalnya dari bahasa Yunani “magnitis lithos” yang artinya batu merupakan suatu nama wilayah yang ada di Yunani pada masa lalu yang sekarang bernama Manisa sekarang ada di kawasan Turki.Di area itu, banyak memiliki kandungan magnet yang sudah ditemukan sejak pada zaman terbuat dari logam seperti baja dan besi. Magnet mempunyai beragam bentuk serta dinamakan sesuai dengan bentuknya, seperti magnet U serta magnet kutub magnet batang bisa diketahui dengan menggunakan percobaan sederhana, sepertiLetakan magnet batang pada atas gabus kemudian apungkan dalam permukaan air. Sehingga ujung magnet yang menunjuk menuju arah utara ialah kutub utara magnet. Sementara untuk ujung magnet yang menunjuk arah selatan adalah kutub selatan – kutub yang sama jika didekatkan akan saling menolak, sementara kutub yang berbeda jika didekatkan akan saling tarik – kutub tersebut selalu ada dalam setiap magnet meski magnet itu dipotong menjadi potongan magnet gaya magnet asalnya dari interaksi antara kutub – kutub magnet yang ditimbulkan dari gerakan muatan listrik elektron terhadap – Garis Gaya MagnetGaris – garis gaya magnet mempunyai pola yang berbeda – beda, diantaranya yaitua. Pola pada Batang Magnet TunggalApabila kalian taburkan serbuk besi di sekitar magnet batang dengan seragam, serbuk besi itu akan bersifat magnet sementara sebab adanya induksi tersebut akan mengatur dirinya sendiri pada sepanjang garis gaya Pola pada Dua Batang Magnet yang Kutubnya BerbedaApabila kalian tabur serbuk besi, maka serbuk besi akan menjadi magnet sementara oleh induksi serta serbuk -serbuk tersebut akan mengatur diri mereka sedemikian rupa sehingga akan bergerak dari satu kutub menuju kutub yang artinya, pada saat kedua kutub berbeda saling berhadapan, maka akan mempengaruhi serbuk besi untuk saling tarik Pola pada Dua Magnet dengan Kutub SamaApabila kalian taburkan serbuk besi pada sekitar dua buah magnet yang didekatkan serta dihadapkan dengan kutub yang sama, maka serbuk besi itu akan mengatur diri mereka sampai membentuk lengkungan yang saling artinya, pada saat kedua kutub magnet sama saling dihadapkan, maka mereka akan saling tolak Pola Garis pada Magnet U atau Tapal KudaApabila kalian taburkan serbuk – serbuk besi pada sekitar magnet yang berbentuk U, maka serbuk besi tersebut menjadi magnet sementara serta akan mengatur dirinya agar berada di kawasan juga Gelombang ElektromagnetikVisualisasi Medan MagnetAda dua cara guna menggambarkan suatu medan magnetik, diantaranya yaitu1. Menggunakan Matematik sebagai VektorMasing – masing vektor dalam setiap titik yang bentuknya panah tersebut mempunyai arah serta besarannya tergantung dari besar gaya magnetik di dalam titik Menggunakan GarisSetiap vektor akan disambungkan pada suatu garis yang tak terputus serta banyaknya garis bisa dibuat sebanyak ini menjadi cara yang paling sering digunakan guna menggambarkan sebuah medan – garis gaya magnet mempunyai beberapa sifat seperti berikut iniMedan magnet selalu mempunyai arah dari kutub Utara North menuju Selatan South.Setiap garis tidak akan pernah berpotongan antara satu sama – garis magnet tidak bermulai maupun berhenti dari mana pun, melainkan garis tersebut akan membentuk sebuah lingkaran tertutup serta tetap menyambung pada material akan semakin rapat di area yang nilai medan magnetnya semakin magnet bisa divisualisasikan secara nyata. Cara paling sederhana dengan menyebar bubuk pasir besi di area magnet dan kemudian bubuk pasir besi tersebut menghasilkan karakteristik yang sama seperti dengan garis – garis medan MagnetSifat magnet dibagi menjadi dua, yaitu sifat magnet itu sendiri dan sifat bahan terhadap magnet, berikut penjelasan Sifat MagnetKutub magnet yang sejenis akan saling tolak. Dan begitu juga sebaliknya, kutub yang berlainan akan saling hanya dapat menarik benda yang mempunyai sifat magnet yang berada di memiliki dua kutub, yaitu kutub utara serta kutub kemagnetan busa dihilangkan maupun magnetik dapat membentuk gaya magnet bisa menembus Sifat Magnet BahanDilihat dari sifat interaksi bahan pada magnet, maka sifat benda dapat dikelompokan menjadi tiga kategori, antara laina. Bahan MagnetikBahan – bahan yang bisa ditarik oleh magnet adalah bahan Bahan Non MagnetikBerbagai bahan yang tidak bisa ditarik oleh magnet disebut sebagai bahan Kayu, kertas, plastik, dan ParamagnetikBerbagai benda yang ditarik lemah oleh magnet masuk ke dalam kategori benda Magnesium, molibdenum, serta FaromagnetikBeragam benda yang bisa ditarik kuat oleh magnet masuk ke dalam kelompok Baja, besi, kobalt, serta DiamagnetikBeberapa benda yang tidak bisa ditarik oleh magnet adalah benda Perak, tembaga, emas, serta Medan MagnetBerikut ada dua eksperimen medan magnet yang paling populer, antara lain1. Eksperimen OerstedHans Christian OerstedDi tahun 1819, seorang ilmuwan asal Denmark yang bernama Hans Cristian melakukan percobaan dengan memakai kompas serta kawat tersebut membuat arus listrik yang melalui sebuah kawat konduktor mengalami pembelokan jarum kompas ketika kawat berarus tersebut didekatkan dengan jarum mengalir lewat sepotong kawat membentuk sebuah medan magnet M disekeliling itu terorientasi menurut aturan tangan kanan, tetapi dengan perbedaan bentuk dari kawat yang dialiri arus listrik, maka arahnya akan berbeda dengan medan magnetnya, berikut penjelasannyaa. Medan Magnet oleh Kawat LurusArah dari medan magnetik terhadap kawat lurus berarus bisa ditentukan dengan memakai kaidah tangan pemakaian kaidah tangan kanan tersebut, maka genggam kawat berarus dengan menggunakan tangan kanan, sehingga ibu jari akan menunjukan arah arus listrik, sehingga arah putaran keempat jari lain akan menunjukan arah medan Medan Magnet oleh Kawat MelingkarArah dari medan magnet terhadap kawat melingkar juga bisa ditentukan dengan memakai kaidah tangan dapat memakai keempat jari yang ada pada tangan kanan sebagai arah arus terhadap kawat, sehingga ibu jari akan menunjukan arah dari medan Medan Magnet pada SolenoidaSolenoida merupakan lilitan kawat yang bentuknya bagian solenoida ada sejumlah lilitan yang mana medan magnet seragam bisa dibuat pada saat dialiri oleh arus medan magnetik di dalam solenoida juga bergantung dengan Jumlah arus yang mengalir, jumlah lilitan, serta sifat inti dalam Eksperimen Faraday & HenryFaraday & HenryDua orang ilmuwan asal Inggris dan Amerika yang bernama Michael Faraday dan Josep Henry sudah melakukan eksperimen terkait induksi menemukan adanya fakta hika perubahan di dalam medan magnetik akan menghasilkan induksi arus & Rumus Medan MagnetSebab medan magnet adalah besaran vektor, maka ada dua aspek yang digunakan untuk mengukur medan magnetik, yakni besar dan mengukur arahnya, kalian bisa memakai kompas kompas magnet diletakkan pada area medan magnetik, maka arah jarum kompas nantinya akan mengikuti arah medan magnet pada titik dalam rumus medan magnetik, besaran medan magnetik akan dituliskan dengan menggunakan simbol dengan sistem Internasional, besarnya mempunyai satuan dalam tesla T yang diambil dari nama Nikola diartikan sebagai seberapa besar gaya medan magnetik Sebuah kulkas kecil yang dapat memproduksi medan magnetik sebesar 0,001 sebuah cara untuk membuat medan magnetik tanpa memakai magnet, yaitu dengan cara mengalirkan arus kalian alirkan arus listrik lewat kabel contohnya dengan cara menyambungkannya ke baterai, maka kalian akan memperoleh dua kejadian besar arus yang mengalir di dalam kabel, maka akan semakin besar juga medan magnetik yang dihasilkan. Demikian juga dengan hukum Ampere, besar medan magnetik yang dihasilkan bisa dihitung dengan menggunakan rumusRumus Medan MagnetDimana I merupakan besar arus listrik, r jarak dari kabel, serta Ï€0 adalah konstanta permeabilitas Ï€0 = 4Ï€ x 10-7Tm/A.Rumus Besar Arus ListrikI = B 2Ï€r/ μKeteranganB = Besar medan magnet T.μ = Konstanta permeabilitas 4Ï€ 10-7 Tm/A.I = Arus listrik A.r = Jarak dari kabel m.Untuk mengetahui arahnya, kalian bisa memakai prinsip tangan kanan. Ibu jari adalah arah aliran listrik serta jari -jari lainnya akan menunjukkan arah medan magnetik disekitar Tangan Kanan guna menentukan Arah Medan Magnet B berdasarkan Arah Arus Listrik I.Arah ibu jari mengarah menuju atas menyatakan arah alur listrik dengan simbol i. Sementara untuk arah empat jari -jari lainnya menyatakan arah medan magnetik dengan menggunakan simbol B. Gambar di atas pada posisi horizontal dan juga SoalBerikut adalah contoh soal yang berkaitan dengan medan magnet, antara lain1. Perhatikan gambar di bawah ini!Suatu kabel dialirkan arus listrik yang ditempatkan pada dekat kompas magnet. Berapa besar arus listrik dan arahnya yang diperlukan guna menghilangkan medan magnetik bumi pada kompas sehingga kompas menjadi tidak berfungsi?JawabMedan magnet bumi diibaratkan sebesar 5 x 10-5 TPembahasanDengan memakai rumus medan magnetMaka bisa dicari besar arus listrik yaituDiketahui jika jarak r dari kompas menuju kabel sebesar 0,05 m. Maka didapatkanDengan memakai kaidah tangan kanan, kalian harus menempatkan ibu jari ke bawah agar jari – jari yang lain mempunyai arah yang berlawanan dengan medan magnetik kompas. Sehingga arah arus harus dapat menembus menuju kertas atau layar menjauhi.2. Berdasarkan soal pada nomor satu, apabila diketahui jika arus yang bisa dialirkan lewat kabel hanya sebesar 1,25 A. Hitunglah besar jarak r untuk tetap menghilangkan medan magnetik bumi pada kompas!JawabDengan memakai rumus medan magnetMaka bisa dicari jarak r yaituDari persamaan di atas, maka dapat diketahui jika besar arus listrik I sebanding dengan jarak r. Sehingga apabila arus listriknya diperkecil menjadi 1/10 sepersepuluh dari sebelumnya, maka besar jarak r juga akan mengecil 1/10 sepersepuluh dari besar dapat diketahui, jarak r sebesar 0,005 m / 5 Perhatikan gambar di bawah ini!Kawat A serta B terpisah sejauh 1 m kemudian dialiri arus listrik berturut – turut 1 A dan juga 2 A dengan arah seperti ditunjukkan pada gambar di letak titik C yang mana kuat medan magnetnya ialah sebesar NOL!JawabSupaya kuat medan nol, maka kuat medan yang dihasilkan dari kawat A dan kawat B harus berlawanan arah serta sama yang mungkin yaitu ada pada sebelah kiri kawat A maupun ada pada sebelah kanan kawat B. Mana yang harus di ambil, kalian ambil titik yang lebih dekat menuju kuat arus lebih posisinya iaah disebelah kiri kawat A yang dapat kalian beri nama jaraknya sebagai Perhatikan gambar di bawah ini!Tentukan besar serta arah kuat medan magnet pada titik P!JawabArus A akan menghasilkan medan magnet yang ada di titik P dengan arah masuk bidang, sedangkan arus B akan menghasilkan medan magnet dengan arah keluar sesuai Ba yakni masuk Perhatikan gambar di bawah ini!Seutas kawat dialiri arus listrik i = 4 A, maka tentukanA. Kuat medan magnet di titik A B. Kuat medan magnet di titik B C. Arah medan magnet di titik A D. Arah medan magnet di titik BJawabDiketahuiI = 4 ArA = 2mrB = 1mPenyelesaianA. Kuat medan magnet di titik AB = μ I / 2 Ï€ rA = 4 Ï€ 10-7 4 / 2 Ï€ 2 = 4 10-7 TSehingga medan magnet di titik A yaitu 4 10-7 TB. Kuat medan magnet di titik BB = μ I / 2 Ï€ rB B = 4 Ï€ 10-7 4 / 2 Ï€ 1 B = 8 10-7 TSehingga medan magnet di titik B yaitu 8 10-7 TC. Arah medan magnet di titik APada soal yang menanyakan ara, kalian bisa memakai aturan tangan kanan, yang mana ibu jari diibaratkan sebagai arus serta empat jari lainnya menjadi medan magnetik dengan posisi menggenggam kawat pada titik dapat diketahui, arah medan magnetik di titik A yaitu ke luar /mendekati Arah medan magnet di titik BSeperti cara pada opsi C, kalian dapat memakai aturan tangan kanan namun dengan fokus pada titik B. Sehingga arah medan magnetik di titik B yaitu ke dalam / menjauhi pembaca. PDGK4107MODUL 8 LISTRIK DAN MAGNET KEMAGNETAN: BENTUK MEDAN MAGNET A. TUJUAN PERCOBAAN Menunjukkan bentuk medan magnet sebuah magnet batang dengan menggunakan serbuk besi. B. ALAT DAN BAHAN 1. Karton putih 1 lembar 2. Magnet batang 1 buah 3. Serbuk besi secukupnya C. LANDASAN TEORI Dalam kehidupan sehari-hari, ada banyak sekali benda-benda di

- Daerah disekitar magnet yang masih dipengaruhi oleh gaya magnet disebut medan magnet. Biasanya, medan magnet digambarkan sebagai garis–garis gaya magnet dan dinyatakan dengan anak diketahui bahwa medan magnet tidak hanya dihasilkan dari sebuah magnet, tetapi bisa juga dihasilkan dari kawat yang dialiri arus listrik. Sebuah kawat lurus panjang yang dialiri arus listrik searah akan menghasilkan medan magnet disekitarnya. Konsep mengenai medan magnet di sekitar kawat berarus listrik ini ditemukan secara tidak sengaja oleh Hans Christian Oersted 1770-1851. Baca juga Berikut Ini Sifat-Sifat Magnet Beserta Contohnya Pada tahun 1820, Oersted melakukan penelitian mengenai pengaruh medan magnet disekitar kawat berarus. Percobaan Oersted inilah yang memulai penelitian lanjutan tentang bentuk medan magnet yang dihasilkan oleh energi listrik. Garis-garis gaya magnet Dilansir dari Sumber Belajar Kementerian Pendidikan dan Kebudayaan Kemdikbud, terdapat beberapa hal yang perlu diperhatikan mengenai garis-garis gaya magnet, yakni Garis-garis gaya magnet tidak saling berpotongan. Garis-garis gaya magnet selalu keluar dari kutub utara magnet dan masuk ke kutub selatan magnet. Daerah yang garis-garis gaya magnetnya rapat menunjukkan medan magnet yang kuat. Daerah yang garis-garis magnetiknya renggang menunjukkan medan magnet yang lemah. Baca juga Medan Magnet Tsunami dapat Menjadi Peringatan Dini Tsunami, Studi Jelaskan Besaran medan magnet Faktor-faktor yang memengaruhi besarnya medan magnet pada suatu titik adalah Besarnya gaya magnet yang dialami oleh titik tersebut. Berbanding terbalik dengan jarak titik terhadap sumber magnet. Penerapan konsep medan magnet Magnet telah digunakan sejak lama untuk memudahkan berbagai pekerjaan dari Sciencing, berikut adalah beberapa contoh penerapan magnet dalam kehidupan sehari-hari 1. Komputer dan elektronik Banyak komputer menggunakan magnet untuk menyimpan data pada hard drive. Speaker kecil yang ada pada komputer, televisi, dan radio juga menggunakan magnet. Baca juga Analisis Magnet Bumi di Gempa Selatan Jawa Timur, Begini Kata BMKG Di dalam speaker, kumparan kawat dan magnet mengubah sinyal elektronik menjadi getaran suara. 2. Tenaga listrik dan industri lainnya Magnet menawarkan banyak manfaat bagi dunia industri. Magnet pada generator listrik mengubah energi mekanik menjadi listrik, sementara beberapa motor menggunakan magnet untuk mengubah listrik menjadi kerja mekanis. Contoh lainnya, tambang menggunakan mesin sortir magnetik untuk memisahkan bijih logam yang berguna dari batu yang dihancurkan. 3. Kesehatan Magnet ditemukan di beberapa peralatan medis yang umum digunakan, seperti Magnetic Resonance Imaging MRI. Baca juga Medan Magnet Bumi telah Berubah Sejak Ribuan Tahun Lalu, Studi Jelaskan MRI menggunakan medan magnet yang kuat untuk menghasilkan sinyal radio seperti radar dari dalam tubuh. MRI juga menggunakan sinyal tersebut untuk membuat gambar tulang, organ, dan jaringan lain yang jelas dan terperinci. Dapatkan update berita pilihan dan breaking news setiap hari dari Mari bergabung di Grup Telegram " News Update", caranya klik link kemudian join. Anda harus install aplikasi Telegram terlebih dulu di ponsel.

JudulPercobaan : Percobaan Bentuk Medan Magnet. 2. Tujuan : Menunjukan bentuk medan magnet sebuah magnet batang . dengan serbuk-serbuk besi. 3. Alat dan Bahan : Gambar B menujukna pola yang dibuat oleh serbuk besi detelah magnet diletakan diatas serbuk besi . 3. Gambar C menunjukan bahwa apa bila kutub N (utara) didekatkan ke kutub S
Laporan Praktikum Fisika II Modul IV – Percobaan Medan Magnet dalam Solenoida Eka Putra Prasetya/18524057 Asisten Vera Giyaning Tiyas Tanggal praktikum 18 Juni 2019 18524057 Teknik Elektro – Fakultas Teknologi Industri Universitas Islam Indonesia Abstrak— Kata “Magnet” sudah kita dengar pada kehidupan sehari – hari. Kita sering berfikir jika kita mendengar kata magnet selalu berhubungan dengan hal – hal menarik benda. Magnet sangat berguna untuk kehidupan sehari – hari seperti menarik benda – benda yang jatuh di tempat yang tidak bisa kita jangkau. Selain itu, alat – alat disekitar kita juga banyak yang memanfaatkan magnet ini seperti, kompas, telepon, pembangkit listrik, dan masih banyak lainnya. Karena banyaknya kegunaan magnet, Praktikum ini sangat berguna untuk memahami lebih jauh tentang magnet khususnya untuk untuk memahami pengaruh arus listrik dan jumlah lilitan per satuan panjang terhadap medan magnet solenoid. Praktikum kali ini mengalami kendala yaitu Rheostat tidak bisa digunakan. Kendala ini menyebabkan data percobaan tidak didapatkan secara utuh. Data referensi yang sudah ada digunakan untuk menganalisa komponen – komponen pada praktikum ini. Semakin besar arus listrik dan jumlah lilitan per satuan panjang maka medan listrik yang dihasilkan semakin besar. Kata kumci—Medan Magnet I. PENDAHULUAN Kata “Magnet” sudah kita dengar pada kehidupan sehari – hari. Kita sering berfikir jika kita mendengar kata magnet selalu berhubungan dengan hal – hal menarik benda. Magnet sangat berguna untuk kehidupan sehari – hari seperti menarik benda – benda yang jatuh di tempat yang tidak bisa kita jangkau. Selain itu, alat – alat disekitar kita juga banyak yang memanfaatkan magnet ini seperti, kompas, telepon, pembangkit listrik, dan masih banyak lainnya. Karena banyaknya kegunaan magnet, Praktikum ini sangat berguna untuk memahami lebih jauh tentang magnet khususnya untuk untuk memahami pengaruh arus listrik dan jumlah lilitan per satuan panjang terhadap medan magnet solenoid. II. TINJAUAN PUSTAKA A. Medan Magnet Medan magnet adalah medan yang terbentuk oleh gaya – gaya yang berada di sekitar magnet. Medan ini tidak bisa dilihat namun dapat dirasakan dengan cara mengamati pengaruh magnet terhadap benda lain, misalnya seperti magnet yang menarik pasir – pasir besi. B. Kuat Arus Kuat arus listrik didefinisikan sebagai besar muatan listrik yang melalui sebuah media konduktor dalam satu waktu. Proton dan elektron di dalam atom pada dasarnya adalah pembawa muatan listrik ini yang mana proton memiliki muatan positif dan elektron memiliki muatan negatif. Proton hanya dapat bergerak di dalam inti atom. Arus listrik ini ditimbulkan oleh gerakan elektron valensi yang bergerak dari atom yang satu ke atom yang lainnya. C. Solenoida Solenoida adalah alat yang dapat mengonversi energi listrik menjadi energi gerak. Dorongan dan tarikan merupakan gerakan yang biasanya dihasilkan dari Solenoid. Solenoid ini tersusun atas sebuah lilitan kumparan listrik electrical coil yang dililitkan pada tabung silinder dengan aktuator ferro-magnetic yang dapat “Masuk” dan “Keluar” bodi kumparan. Aktuator yang dimaksud disini adalah alat yang dapat bergerak. Besarnya medan magnet dalam solenoid dinyatakan pada persamaan dibawah ini      B = Kuat medan magnet  = Tetapan permeabilitas pada ruang hampa Tesla-meter/Ampere. Nilainya 4π.m/A N = Jumlah lilitan kawat per satuan panjang solenoida lilitan/m I = Arus listrik Ampere Rumus jumlah lilitan kawat per satuan panjang    N = Jumlah lilitan lilitan I = Panjang solenoid Rumus jika percobaan tidak dilakukan dalam ruang hampa      Dengan  adalah tetapan permeabilitas. Jika medium tempat diukurnya medan magnet di tengah solenoid adlaah udara, k ditentukan sebagai persamaan berikut   III. METODE PRAKTIKUM Pada praktikum kali ini alat dan bahan yang digunakan adalah 1 buah catu daya KAL 61 3A 12V regulasi, 1 buah solenoid 50 cm, 1 buah rheostat 2-10 4A, 2 buah kabel penghubung 50 cm merah, 1 buah sensor medan magnet BT-plug, 1 buah eurolab interface, 1 buah multimeter digital, 2 buah kabel penghubung 50 cm hitam. Hal pertama yang harus dilakukan adalah mempersiapkan percobaan. Pertama, sensor medan magnet dihubungkan ke piranti antarmuka Eurolab, kemudian Eurolab disambungkan ke computer. Setelah itu, terdapat satu garis skala pada tabung solenoid bernilai cm diperhatikan sehingga jarak antar garis makro = 1 cm. Skala total = 54 cm. Kemudian, rangkaian alat catu daya, multimeter mode amperemeter, hambatan geser rheostat, dan solenoid disusun secara seri. Setelah itu, catu daya pada tegangan 6 V dinyalakan dan multimeter dinyalakan untuk pengukuran arus DC. Kemudian, aktivitas “Medan Magnet dalam dibuka pada program Coach. Setelah itu, nilai medan magnet yang terdeteksi oleh sensor diperhatikan dan memastikan sensor mendeteksi medan magnet dengan baik jika nilai yang terukur fluktuatif di kondisi lingkungan dan konstan jika didekatkan ke magnet, maka sensor berfungsi dengan baik. Setelah persiapan alat telah selesai dipersiapkan, percobaan pertama yang dilakukan adalah pengaruh arus listrik terhadap kuat medan magnet solenoid. Pertama, sensor medan magnet dimasukkan ke dalam solenoid. Kemudian, kumparan direnggangkan menjadi 50 cm dan jarak antar lilitan diatur sama secara perlahan. Setelah itu, jumlah lilitan solenoid dihitung, dan dicatat sebagai nilai N. Kemudian, catu daya dan multimeter dinyalakan. Setelah itu, besar arus diatur dengan menggeser hambatan geser hingga mencapai nilai A. Kemudian, tombol Start diklik. Nilai yang terukur oleh sensor dan ditampilkan pada program Coach akan berubah – ubah dalam rentang waktu tertentu. Nilai medan magnet maksimum dipilih dari pengukuran tersebut dan nilainya dicatat pada tabel Terakhir, langkah 2-6 diulangi untuk kenaikan arus sebesar A hingga mencapai arus A atau semaksimal mungkin mendekati 3 A. Percobaan terakhir yang dilakukan adalah pengaruh jumlah lilitan kawat per satuan panjang terhadap kuat medan magnet solenoida. Peratama, sensor medan magnet dimasukkan ke dalam selonoida. Kemudian, jumlah lilitan kawat selonoida dihitung dan diatur panjang solenoid menjadi 20 cm. Setelah itu, catu daya dan multimeter dinyalakan dan diatur besar arus pada A dengan menggeser hambatan geser. Kemudian, tombol start pada program Coach diklik. Selama pengukuran berlangsung, nilai yang terukur dan ditampilkan oleh program Coach akan berubah – ubah dalam rentang waktu tertentu. Lalu, nilai medan magnet maksimum dari pengukuran tersebut dipilih dan hasilnya dicatat pada tabel Setelah itu, jendela yang muncul diperhatikan. Lalu, nilai average yang merupakan nilai medan magnet rata – rata yang dihasilkan saat panjang solenoid 20 cm dicatat pada tabel pengolahan data. Terakhir, langkah 2-7 untuk setiap pertambahan panjang solenoid sebesar 5 cm hingga 50 cm diulangi. IV. HASIL DAN ANALISIS A. Pengaruh arus listrik terhadap Kuat Medan Magnet Solenoida N = 104 Lilitan l = M n = 208 /m Tabel 1 Hasil Pengamatan Pengaruh Arus Listrik terhadap Kuat Medan Magnet Gambar 1 Grafik pengaruh arus listrik terhadap kuat medan magnet Gambar 2 Pengaruh arus listrik terhadap kuat medan magnet berdasarkan referensi 4    B. Pengaruh Jumlah Lilitan Kawat per Satuan Panjang terhadap Kuat Medan Magnet Solenoida N = 104 Lilitan l = m Tabel 2 Hasil Pengamatan Pengaruh Jumlah Lilitan Kawat per Satuan Panjang terhadap Kuat Medan Magnet Gambar 3 Grafik pengaruh jumlah lilitan kawat per satuan panjang terhadap kuat medan magnet Gambar 4 Pengaruh jumlah lilitan terhadap kuat medan magnet berdasarkan referensi 4     Gambar 5 Rheostat sebelum digeser Gambar 6 Rheostat setelah digeser C. Analisa Praktikum pada kali ini tidak berjalan sempurna. Ketidak sempuranaan itu terjadi karena terdapat sedikit kendala pada Rheostat. Alat sudah dirangkai sesuai dengan langkah kerja karena arus pada saat itu sudah bisa keluar dengan arah yang benar sehingga menurut penulis rangkaian sudah tepat. Namun ketika ingin memperkecil atau memperbesar arus dengan cara menggeser Rheostat, Arus tetap sama tidak ada perubahan. Padahal Reostat sudah digeser beberapa bagian namun arus yang dihasilkan tetap sama. Sepengetahuan penulis, Rheostat ketika digeser maka hambatannya akan berubah. Untuk itu, penulis melakukan pengetesan pada Rheostat dengan cara mengecek hambatannya dengan menggunakan multimeter. Hasil dari pengetesan tersebut dapat dilihat pada gambar 5 dan 6. Gambar tersebut membuktikan bahwa ada kesalahan pada Rheostat. Rheostat tidak memberikan hambatan yang berbeda ketika digeser. Arus yang tidak bisa diatur membuat penulis hanya bisa mendapatkan data medan magnet pada arus yang sudah tercantum dari awal. Reostat berperan penting untuk mengatur arus sesuai data di tabel. Dengan menggeser Reostat maka arus bisa ditentukan sesuai data pada tabel. Karena Reostat tidak memberikan hambatan yang berbeda, data yang didapatkan hanya berjumlah 1 untuk tiap bagian praktikum. Data tersebut tidak bisa untuk membuat grafik hubungannya. Agar bisa menganalisa tiap hubungannya, penulis mencantumkan grafik dari penelitian lain seperti tampak pada gambar 2 dan 4. Pada grafik pada gambar nomor 2 menunjukkan garis lurus gradien positif. Hal ini berarti hubungan antara medan magnet dengan arus listrik adalah berbanding lurus. Semakin besar arus yang masuk maka medan magnet yang dihasilkan akan semakin besar pula. Nilai k pada percobaan A tidak dapat ditemukan karena ketetapan permeabilitas tidak diketahui. Pada grafik pada gambar nomor 4 menunjukkan garis lurus gradient positif. Namun, gambar tersebut menunjukkan hubungan antara medan magnet dan jumlah lilitan. Untuk hubungan tersebut, hubungannya adalah berbanding lurus dimaan semakin banyak jumlah lilitan maka semakin besar medan magnet. Percobaan B tidak menampilkan gambar sehingga tidak bisa dianalisa hubungan antara jumlah lilitan per satuan panjang dengan medan magnet yang dihasilkan. Namun jika melihat pada rumus, hubungannya adalah jika jumlah lilitan ditambah dengan panjang yang tetap maka berbanding lurus. Namun, jika lilitan jumlahnya tetap dan panjangnya berubah ubah maka berbanding terbalik. K pada percobaan B tidak dapat ditemukan karena ketetapan permeabilitas tidak diketahui. Karena grafik tidak diketahui maka tetapan permeabilitas tidak dapat diketahui. Hal ini berakibat pada tidak bisa membandingkan apakah tetapan permeabilitas yang diperoleh dari percobaan dengan permeabilitas ruang hampa. Namun jika dilihat pada teori yang ada maka terdapat perbedaannya. Ruang hampa adalah ruang dimana tidak ada partikel – partikel termasuk udara. Percobaan tersebut dilakukan pada ruangan yang terdapat udara – udara disekitarnya seperti oksigen, nitrogen dan lain – lain. Berdasarkan definisi tersebut maka dapat disimpulkan bahwa tetapan permeabilitas dan permeabilitas ruang hampa berbeda. Dilihat dari rumus, fakor – faktor yang mempengaruhi nilai ketetapan permeabilitas adalah medan magnet, jumlah lilitan per satuan panjang, dan arus. Semakin besar medan magnet maka tetapan permeabilitas akan semakin besar. Namun semakin besar arus dan jumlah lilitan per satuan panjang maka tetapan permeabilitas akan semakin kecil. V. KESIMPULAN Praktikum kali ini mengalami kendala yaitu Rheostat tidak bisa digunakan. Kendala ini menyebabkan data percobaan tidak didapatkan secara utuh. Data referensi yang sudah ada digunakan untuk menganalisa komponen – komponen pada praktikum ini. Semakin besar arus listrik dan jumlah lilitan per satuan panjang maka medan listrik yang dihasilkan semakin besar. DAFTAR PUSTAKA [1] Modul Praktikum Fisika II. Jurusan Teknik Elektro Universitas Islam Indonesia, 2019. [2] J. Wahyudi and G. Pauzi, "Desain dan Karakteristik Penggunaan Sensor Efek Hall UGN3503 untuk Mengukur Arus Listrik pada Kumparan Leybold P6271 Secara Non Destruktif", Teori dan Aplikasi Fisika, vol. 1, no. 2, 2013. [Accessed 24 June 2019]. [3] H. Budiatma, "Pengertian Permeabilitas magnetik Usaha321", Usaha321, 2018. [Online]. Available [Accessed 24- Jun- 2019]. [4] I. Pebrika, "Analisa Distribusi Medan Magnet pada Sensor Dasar Magnetic Inductance Tomography MIT Menggunakan Simulasi Finite Element Method FEM", 2014. [Accessed 24 June 2019]. 1 Intensitas medan magnetik bumi hampir seluruhnya berasal dari dalam bumi. 2. Medan magnet yang teramati di permukaan bumi dapat didekati dengan persamaan harmonik yang pertama yang berhubungan dengan potensial dwikutub di pusat bumi. Dwi kutub Gauss ini mempunyai kemiringan 11.5 0 terhadap sumbu geografi. LaporanPercobaan Medan Magnet; Tujuan Percobaan: Mengidentifikasi medan magnet: Alat dan bahan: 1..Magnet 2. Serbuk besi yang diperoleh dari gundukan pasir 3. Kertas karton berukuran A4: Langkah-langkah: Langkah-langkah Percobaan: Taruhlah magnet di bawah kertas karton berukuran A4. Taburkan serbuk besi secukupnya di atas kertas karton tersebut. JudulPercobaan : Percobaan Bentuk Medan Magnet. 2. Tujuan : Menunjukan bentuk medan magnet sebuah magnet batang dengan serbuk-serbuk besi. 3. Alat dan Bahan : 1. Gambar C menunjukan bahwa apa bila kutub N (utara) didekatkan ke kutub S (selatan) maka akan kutub N (utara) akan tertarik ke kutub S (selatan), begitu juga sebaliknya.
Gambar4.2.1. (a) Arah medan magnet, (b) Garis-garis medan magnet Sama seperti medan listrik, medan magnetikpun dapat digambarkan dalam bentuk garis-garis khayal yang disebut garis medan magnetik. Garis medan magnetik dapat digambarkan dengan pertolongan sebuah kompas. Percobaan dengan 2 baterai (kutub berlawanan dari sebelumnya) VI.

Diwilayah tersebut banyak kandungan magnet yang ditemukan sejak zaman prasejarah. Magnet terbuat dari logam seperti besi dan baja. Magnet memiliki berbagai bentuk dan dinamakan sesuai bentuknya, seperti manget U dan magnet batang. Penentuan kutub magnet batang dapat dilakukan dengan percobaan sederhana.

A Kutub Magnet. Suatu magnet memperlihatkan ciri-ciri tertentu. Setiap magnet dua tempat yang gaya magnetnya paling kuat. Daerah itu disebut kutub magnet. Ada 2 kutub magnet, yaitu kutub utara (U) dan kutub selatan (S). Seringkali kamu menjumpai magnet yang bertuliskan N dan S. N merupakan kutub utara magnet itu (singkatan dari North yang
RumusBesar Arus Listrik. I = B 2πr/ μ0. Dimana. B = besar medan magnet (T) μ 0 = konstanta permeabilitas (4π 10 -7 Tm/A) I = arus listrik (A) r = jarak dari kabel (m) Setelah mengetahui rumus yang ada marikita terapkan di beberapa soal dibawah ini. Baca juga Hukum Kepler. i0nwgc.
  • 9v04mtm631.pages.dev/319
  • 9v04mtm631.pages.dev/329
  • 9v04mtm631.pages.dev/282
  • 9v04mtm631.pages.dev/743
  • 9v04mtm631.pages.dev/118
  • 9v04mtm631.pages.dev/319
  • 9v04mtm631.pages.dev/1
  • 9v04mtm631.pages.dev/17
  • gambar percobaan bentuk medan magnet